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Introduction

How to price exotic options?

(a) select a model, e.g.

– Black-Scholes model

– stochastic volatility model

– Lévy driven model

– . . .

(b) specify inputs (spot prices, interest rates, vanilla prices)

(c) obtain the model’s unobservable parameters

(d) calculate prices of exotic options

– explicit formula

– P(I)DE solving

– Fourier pricing

– Monte Carlo simulation

– . . .
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– Lévy driven model

– . . .

(b) specify inputs (spot prices, interest rates, vanilla prices)

(c) obtain the model’s unobservable parameters

(d) calculate prices of exotic options

– explicit formula

– P(I)DE solving

– Fourier pricing

– Monte Carlo simulation

– . . .

Karl F. Bannör, Incorporating parameter risk into derivatives prices – an approach to bid-ask spreads 3



Introduction

(c) Obtaining unobservable parameters

(1) estimation:

∗ some estimator’s value θ̂ is used as “true” parameter θ
∗ problem: the estimator’s volatility and possible bias

(2) calibration to market prices:

∗ search for parameter that minimizes pricing error, i.e.

θ0 = arg min
θ∈Θ

η(θ), η(θ) =
∑

vanilla options

|model price(θ)−market price|

∗ problem: other parameters may fit good as well / local minima

/ Problems in (1) and (2)

∗ parameter uncertainty
∗ both procedures disregard information
∗ not reflected in bid-ask prices
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Agenda

Aims

• translate parameter risk into bid-ask spreads

• understand and compare calibration risk of different models / exotic options

• flexible calibration to quoted bid-ask vanilla prices in large class of risk measures

Methodology

• Bayesian approach combined with convex risk measures

• extensive empirical study

• approximation by piecewise linear distortions

Related literature

• Cont (2006): worst-case ansatz for model uncertainty (conservative)

• Lindström (2010): smile modeling by randomizing parameters (non risk-averse)

• Cherny and Madan (2010): parametric calibration ansatz in incomplete markets

• Carr et al. (2001), Branger and Schlag (2004), Xu (2006), Bion-Nadal (2009), . . .
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Risk and uncertainty

Collection of possible outcomes (xι)ι∈I .

Knight (1921) distinguishes two different situations:

• the probabilities of the outcomes are known, i.e. there is a probability measure on
X := {xι : ι ∈ I}

⇒ risk according to Knight (1921)

• the probabilities of the outcomes are unknown

⇒ uncertainty according to Knight (1921)
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Parameter uncertainty...

• (Ω,F ,F) filtered measurable space

• (St)t≥0 basic instrument

• contingent claims discounted with matching numéraire

• parameterized family of martingale measures (Qθ)θ∈Θ on (Ω,F)

• parameter θ ∈ Θ, risk-neutral value of contingent claim X is

θ 7→ Eθ[X ] := EQθ
[X ]

⇒ parameter uncertainty in the sense of Knight (1921)
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...and parameter risk

• (Ω,F ,F) filtered measurable space

• (St)t≥0 basic instrument

• contingent claims discounted with matching numéraire

• parameterized family of martingale measures (Qθ)θ∈Θ on (Ω,F)

• parameter θ ∈ Θ, risk-neutral value of contingent claim X is

θ 7→ Eθ[X ] := EQθ
[X ]

If additionally:

• probability measure R available on Θ quantifying the likelihood of the parameter
θ ∈ Θ

⇒ parameter risk in the sense of Knight (1921)
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Example: Black-Scholes volatility

Black-Scholes model with risk-free rate r > 0 and volatility σ > 0 follows dynamics

dSt = rSt dt + σSt dWt

How to specify σ? ⇒ risk-neutral measures in doubt (Qσ)σ∈R>0

• volatility may be estimated from log returns x1, . . . , xn via variance estimator

σ̂2
N =

1

∆t(N − 1)

N∑
j=1

(xj − x̄)2, x̄ =
1

N

N∑
j=1

xj

• estimator σ̂2
N is χ2-distributed, i.e. the induced distribution on the parameter space

is

R(dx) =
(∆t(N − 1))

N−1
2

Γ
(
N−1

2

)
(2σ2

0)
N−1
2

x
N−3
2 exp

(
−x∆t(N − 1)

2σ2
0

)
1{x>0} dx
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Risk-capturing functionals

D :=
⋂
θ∈Θ

L1(Qθ) = all admissible derivatives

Economic considerations:

• exotics traders acknowledge parameter uncertainty

• idea: risk ↑ implies bid-ask spreads ↑
• Γ risk-capturing functional, X exotic derivative from D

– ask price: Γ(X)

– bid price: −Γ(−X)

• Γ : D → R should fulfill:

1. order preservation: X ≥ Y ⇒ Γ(X) ≥ Γ(Y )

2. diversification: ∀λ ∈ [0, 1]: Γ(λX + (1− λ)Y ) ≤ λΓ(X) + (1− λ)Γ(Y )

3. parameter independence consistency:

θ 7→ Eθ[X ] is constant⇒ Γ(X) = Eθ[X ]

Karl F. Bannör, Incorporating parameter risk into derivatives prices – an approach to bid-ask spreads 10



Risk-capturing functionals
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Risk-capturing functionals

 

 

 

 

 
Quantifies parameter risk of derivative price 

 
 

 

Model: complex financial market 

 

 

 

 

Discounted derivative payout X  
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Ask price: Г(X)= ρ(θ → Eθ[X]) 

Bid price: -Г(-X) 

Risk measure ρ  

Derivative price distribution 

induced by R and θ → Eθ[X] 

Pricing function θ → Eθ[X] 
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Risk-capturing functionals

• R probability measure on Θ

• all A-admissible derivatives

DA :=
{
X ∈

⋂
θ∈Θ

L1(Qθ) : θ 7→ Eθ[X ] ∈ A
}

• ρ convex risk measure (normalized, law-invariant)

Definition 1
The parameter risk-capturing functional w.r.t. ρ is defined by

Γ : DA → R, Γ(X) := ρ(θ 7→ Eθ[X ])

• Γ(X) is the risk-captured ask price of X

• −Γ(−X) is the risk-captured bid price of X

• ρ is the generator of Γ
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Convergence results
Motivation

• Estimation of parameter θ ∈ Θ by consistent sequence of estimators (θN)N∈N

• Define distributions on Θ by pushforward measures RN := PNθN

• Risk-captured prices converge to price w.r.t. the true parameter, i.e.
ΓRN

(X)→ Eθ0(X), N →∞?

• If distribution RN not known or complicated, substitution with asymptotic
distribution (e.g. normal) possible?

⇒ risk-captured prices should preserve weak convergence of distributions
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Convergence results
Spectral risk measures are good-natured

Theorem 2
For spectral risk measures ρ and RN → R0 weakly, Γρ(X ;RN)→ Γρ(X ;R), if
θ 7→ Eθ[X ] is continuous and bounded.

• convergence on Cb(Θ) in practice not very restrictive

• risk measure version of Portmanteau theorem as a corollary

• some risk-capturing functionals do not fulfill (CP): essential supremum

• large sample approximations via delta method

• meanwhile, more general results employing stronger topologies are provided by
Krätschmer et al. (2012)
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Case study: Asian option bid-ask spreads

Karl F. Bannör, Incorporating parameter risk into derivatives prices – an approach to bid-ask spreads 17



Case study: barrier option option bid-ask spreads
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Case study: lookback option bid-ask spreads
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Choice of risk measure

Which risk-capturing functional Γ, resp. convex risk measure ρ, to choose?

• bid-ask spreads of exotics should match to bid-ask spreads of vanillas

• calibration to vanilla bid-ask prices ⇒ market-implied risk measure?

Challenges

• class of all law-invariant convex risk measures may be too big

• description of law-invariant convex risk measures is cumbersome

• flexible and tractable subclass?
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Distorted probabilities and the Choquet integral

Definition 3 (Distortion function)
A function γ : [0, 1]→ [0, 1] is called distortion function, if γ is monotone, γ(0) = 0,
and γ(1) = 1.

Natural construction of risk measures employing distortion functions:

Proposition 4 (e.g. Denneberg (1994))
γ concave distortion function ⇒ the Choquet integral

Γ(X) :=

∫
X d(γ ◦ P )

:=

∫ 0

−∞
γ(P (X > x))− 1 dx +

∫ ∞
0

γ(P (X > x)) dx

is a coherent risk measure, the distortion risk measure with distortion γ.
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Why distortion risk measures?

• convenient construction principle for coherent risk measures

• fully characterizable by concave distortion function γ

⇒ tractable translation of risk measures into functions

• distortion risk measures are the “center of attraction” of coherent risk measures in
CLT sense (cf. Belomestny and Krätschmer (2012))

• calculation of Choquet integrals is convenient

• distorted probabilities are widely understood in insurance and finance
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Examples for distortion functions

Example 5 (AVaR-family of concave distortions)
(AVaRα)α∈(0,1] is parametric class of distortion risk measures w.r.t. the distortion
function

γα(y) :=

{
y
α, y ∈ [0, α]

1, otherwise

Example 6 (minmaxvar-family of concave distortions)
ψx(y) : [0, 1]→ [0, 1], x ∈ R≥0 with

ψx(y) := 1−
(

1− y
1

x+1

)x+1

defines the minmaxvar-family of concave distortions (cf. Cherny and Madan (2010))
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Bid-ask calibration problem

• Cherny and Madan (2010): Calibration of bid-ask prices to parametric families of
distortion risk measures

• parametric approach feasible?

• little empirical evidence about specific shape of distortion functions ⇒
non-parametric approach

Problem 7 (Bid-ask calibration problem)
• C1, . . . , CM contingent claims with bid-ask quotes (C̄bid

1 , C̄ask
1 ), . . . , (C̄bid

M , C̄ask
M )

• η : R2M
≥0 → R≥0 error function

Convex risk measure Γ̃ solves (symmetric) bid-ask calibration problem on G, if Γ̃
minimizes the function

Γ 7→ η
(
| − Γ(−C1)− C̄bid

1 |, . . . , | − Γ(−CM)− C̄bid
M |,

|Γ(C1)− C̄ask
1 |, . . . , |Γ(CM)− C̄ask

M |
)

over G
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Bid-ask calibration problem

Theorem 8 (Existence of a solution to the bid-ask calibration problem)
K > 0, η continuous error function, f (X) := E·[X ] R-a.s. bounded and

GK := {γ : [0, 1]→ [0, 1] : γ Lipschitz, concave distortion function with Lipschitz constant K}.
Then the bid-ask calibration problem has a solution in GK .

Proof
• use Arzelà-Ascoli theorem to show ‖ · ‖∞-compactness of GK

• show that the Choquet integral is ‖ · ‖∞-continuous in γ 2
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Bid-ask calibration problem
Comments

Class GK is very wide, since

• every concave distortion function is Lipschitz on [ε, 1] for every ε > 0

• bid-ask calibration problem can be solved in ‖ · ‖∞-closed subclasses of distortion
functions

• Theorem 10 can be extended to discontinuous distortion functions

Consequences

• bid-ask calibration problem solvable in more general, not-so-easy-to-parameterize
classes

• finding a tractable, more flexible class than one-parametric families may yield more
flexibility
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Non-parametric calibration ansatz

Lemma 9
Every concave distortion function can be ‖ · ‖∞-approximated by concave piecewise
linear distortion functions.

• concave piecewise linear functions are a flexible class

• Choquet integral w.r.t. a concave piecewise linear distorted probability can be easily
calculated

⇒
Constrained optimization problem, finding a vector ∆γ ∈ RN minimizing the error
function η subject to the constraints

N∑
n=1

∆γn = 1, ∆γ ≥ 0,(
∆γ2

y2 − y1
− ∆γ1

y1 − y0
, . . . ,

∆γN
yN − yN−1

− ∆γN−1

yN−1 − yN−2

)
=: D(∆γ) ≤ 0
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Non-parametric calibration ansatz

Goal function for optimization:

min
∆γ∈RN

≥0

η

( ∣∣∣∣∣
N∑
n=1

∆γnE[f (C1)|f (C1) ∈ [qyn−1
, qyn]]− C̄bid

1

∣∣∣∣∣ , . . . ,∣∣∣∣∣
N∑
n=1

∆γnE[f (CM)|f (CM) ∈ [qyn−1
, qyn]]− C̄bid

M

∣∣∣∣∣ ,∣∣∣∣∣
N∑
n=1

∆γnE[f (C1)|f (C1) ∈ [VaRyn−1
,VaRyn]]− C̄ask

1

∣∣∣∣∣ , . . . ,∣∣∣∣∣
N∑
n=1

∆γnE[f (CM)|f (CM) ∈ [VaRyn−1
,VaRyn]]− C̄ask

M

∣∣∣∣∣
)
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Calibration to bid-ask data

• Data: 501 bid-ask prices of DAX pv calls/puts

• Calibration to mid prices with a BNS model

• Distribution on parameter space as above

• Calibration to bid-ask prices with piecewise linear, AVaR-, minmaxvar-distortions

Distortion type RMSE/mean to bid-ask prices CPU time
piecewise linear 1 000 nodes 1.64% 301.11 sec
piecewise linear 100 nodes 1.64% 4.26 sec
minmaxvar-family 1.65% 3.17 sec
AVaR-family 1.64% 3.73 sec
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Calibration to bid-ask data
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Calibration to bid-ask data
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Calibration to bid-ask data
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Empirical result

• results are pretty similar in calibration performance

• piecewise linear distortion has characteristic shape

• yields new parametric family allowing for fast and efficient calibration

γλ(u) :=

{
0, u = 0

λ + (1− λ)u, u ∈ (0, 1]

is called the ess sup-expectation convex combination risk measure with weight λ ∈ [0, 1]

Distortion framework RMSE/mean to bid-ask prices CPU time
piecewise linear 100 nodes 1.64% 4.26 sec
minmaxvar-family 1.65% 3.17 sec
AVaR-family 1.64% 3.73 sec
ess sup-exp-family 1.64% 0.21 sec
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Conclusion

(1) new methodology for non-linear derivatives pricing

(2) incorporating parameter risk employing convex risk measures

(3) bid-ask spreads of exotic options can be set according to parameter risk

(4) parameter risk of different models can be compared

(5) non-parametric ansatz for the bid-ask calibration problem

(6) empirical results about distortion shape
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Case study: Heston model (barrier option)
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