Incorporating parameter risk into derivatives prices – an approach to bid-ask spreads

June 2013, Warsaw, Poland

Karl F. Bannör Lehrstuhl für Finanzmathematik Technische Universität München

This talk is based on joint work with **M. Scherer**

Introduction

How to price exotic options?

(a) select a model, e.g.

- Black-Scholes model
- stochastic volatility model
- Lévy driven model
- **-** . . .
- (b) specify inputs (spot prices, interest rates, vanilla prices)
- (c) obtain the model's unobservable parameters
- (d) calculate prices of exotic options
 - explicit formula
 - P(I)DE solving
 - Fourier pricing
 - Monte Carlo simulation

— . . .

Introduction

How to price exotic options?

(a) select a model, e.g.

- Black-Scholes model
- stochastic volatility model
- Lévy driven model
- **-** . . .

(b) specify inputs (spot prices, interest rates, vanilla prices)

$(\ensuremath{\mathsf{c}})$ obtain the model's unobservable parameters

- (d) calculate prices of exotic options
 - explicit formula
 - P(I)DE solving
 - Fourier pricing
 - Monte Carlo simulation

— . . .

Introduction

(c) Obtaining unobservable parameters

- (1) estimation:
 - * some estimator's value $\hat{\theta}$ is used as "true" parameter θ
 - \ast problem: the estimator's volatility and possible bias
- (2) calibration to market prices:
 - \ast search for parameter that minimizes pricing error, i.e.

$$\theta_0 = \arg\min_{\theta\in\Theta} \eta(\theta), \quad \eta(\theta) = \sum_{\text{vanilla options}} |\text{model price}(\theta) - \text{market price}|$$

 \ast problem: other parameters may fit good as well / local minima

⁽²⁾ Problems in (1) and (2)

- * parameter uncertainty
- \ast both procedures disregard information
- \ast not reflected in bid-ask prices

Agenda

Aims

- translate parameter risk into bid-ask spreads
- understand and compare calibration risk of different models / exotic options
- flexible calibration to quoted bid-ask vanilla prices in large class of risk measures

Methodology

- Bayesian approach combined with convex risk measures
- extensive empirical study
- approximation by piecewise linear distortions

Related literature

- Cont (2006): worst-case ansatz for model uncertainty (conservative)
- Lindström (2010): smile modeling by randomizing parameters (non risk-averse)
- Cherny and Madan (2010): parametric calibration ansatz in incomplete markets
- Carr et al. (2001), Branger and Schlag (2004), Xu (2006), Bion-Nadal (2009), ...

Risk and uncertainty

Collection of possible outcomes $(x_{\iota})_{\iota \in I}$.

Knight (1921) distinguishes two different situations:

 \bullet the probabilities of the outcomes are known, i.e. there is a probability measure on $X:=\{x_{\iota}:\ \iota\in I\}$

 \Rightarrow **risk** according to Knight (1921)

• the probabilities of the outcomes are unknown

 \Rightarrow uncertainty according to Knight (1921)

Parameter uncertainty...

- $\bullet \ (\Omega, \mathcal{F}, \mathbb{F})$ filtered measurable space
- $(S_t)_{t \ge 0}$ basic instrument
- contingent claims discounted with matching numéraire
- parameterized family of martingale measures $(Q_{\theta})_{\theta \in \Theta}$ on (Ω, \mathcal{F})
- \bullet parameter $\theta\in \Theta,$ risk-neutral value of contingent claim X is

 $\theta \mapsto \mathbb{E}_{\theta}[X] := \mathbb{E}_{Q_{\theta}}[X]$

 \Rightarrow parameter uncertainty in the sense of Knight (1921)

...and parameter risk

- $\bullet~(\Omega,\mathcal{F},\mathbb{F})$ filtered measurable space
- $(S_t)_{t \ge 0}$ basic instrument
- contingent claims discounted with matching numéraire
- parameterized family of martingale measures $(Q_{\theta})_{\theta \in \Theta}$ on (Ω, \mathcal{F})
- \bullet parameter $\theta\in \Theta,$ risk-neutral value of contingent claim X is

 $\theta \mapsto \mathbb{E}_{\theta}[X] := \mathbb{E}_{Q_{\theta}}[X]$

If additionally:

- \bullet probability measure R available on Θ quantifying the likelihood of the parameter $\theta\in\Theta$
- \Rightarrow parameter risk in the sense of Knight (1921)

Example: Black-Scholes volatility

Black-Scholes model with risk-free rate r>0 and volatility $\sigma>0$ follows dynamics

 $\mathrm{d}S_t = rS_t\,\mathrm{d}t + \sigma S_t\,\mathrm{d}W_t$

How to specify σ ? \Rightarrow risk-neutral measures in doubt $(Q_{\sigma})_{\sigma \in \mathbb{R}_{>0}}$

• volatility may be estimated from log returns x_1, \ldots, x_n via variance estimator

$$\hat{\sigma}^2{}_N = \frac{1}{\Delta t(N-1)} \sum_{j=1}^N (x_j - \bar{x})^2, \quad \bar{x} = \frac{1}{N} \sum_{j=1}^N x_j$$

• estimator $\hat{\sigma^2}_N$ is χ^2 -distributed, i.e. the induced distribution on the parameter space is

$$R(\mathrm{d}x) = \frac{(\Delta t(N-1))^{\frac{N-1}{2}}}{\Gamma\left(\frac{N-1}{2}\right)(2\sigma_0^2)^{\frac{N-1}{2}}} x^{\frac{N-3}{2}} \exp\left(-\frac{x\Delta t(N-1)}{2\sigma_0^2}\right) \mathbb{1}_{\{x>0\}} \mathrm{d}x$$

$$\mathcal{D} := \bigcap_{\theta \in \Theta} L^1(Q_\theta) = \mathsf{all admissible derivatives}$$

Economic considerations:

- exotics traders acknowledge parameter uncertainty
- idea: risk \uparrow implies bid-ask spreads \uparrow
- $\bullet\ \Gamma$ risk-capturing functional, X exotic derivative from ${\mathcal D}$
 - ask price: $\Gamma(X)$
 - bid price: $-\Gamma(-X)$
- $\Gamma: \mathcal{D} \to \mathbb{R}$ should fulfill:
 - 1. order preservation: $X \ge Y \Rightarrow \Gamma(X) \ge \Gamma(Y)$
 - 2. diversification: $\forall \lambda \in [0,1]$: $\Gamma(\lambda X + (1-\lambda)Y) \leq \lambda \Gamma(X) + (1-\lambda)\Gamma(Y)$
 - 3. parameter independence consistency:

$$\theta \mapsto \mathbb{E}_{\theta}[X] \text{ is constant} \Rightarrow \Gamma(X) = \mathbb{E}_{\theta}[X]$$

Model: complex financial market

Discounted derivative payout X

Parameter space Θ

Derivative price $E_{\theta}[X]$

- $\bullet~R$ probability measure on Θ
- \bullet all $\mathcal A\text{-}\mathsf{adm}\mathsf{issible}$ derivatives

$$\mathcal{D}^{\mathcal{A}} := \left\{ X \in \bigcap_{\theta \in \Theta} L^1(Q_{\theta}) : \theta \mapsto \mathbb{E}_{\theta}[X] \in \mathcal{A} \right\}$$

• ρ convex risk measure (normalized, law-invariant)

Definition 1

The parameter risk-capturing functional w.r.t. ρ is defined by

 $\Gamma: \mathcal{D}^{\mathcal{A}} \to \mathbb{R}, \quad \Gamma(X) := \rho(\theta \mapsto \mathbb{E}_{\theta}[X])$

- $\bullet\ \Gamma(X)$ is the risk-captured ask price of X
- \bullet $-\Gamma(-X)$ is the risk-captured bid price of X
- ρ is the generator of Γ

Convergence results Motivation

- Estimation of parameter $\theta \in \Theta$ by consistent sequence of estimators $(\theta_N)_{N \in \mathbb{N}}$
- Define distributions on Θ by pushforward measures $R_N := P^{N^{\theta_N}}$
- Risk-captured prices converge to price w.r.t. the true parameter, i.e. $\Gamma_{R_N}(X) \to \mathbb{E}_{\theta_0}(X)$, $N \to \infty$?
- If distribution R_N not known or complicated, substitution with asymptotic distribution (e.g. normal) possible?
- $\Rightarrow\,$ risk-captured prices should preserve weak convergence of distributions

Convergence results Spectral risk measures are good-natured

Theorem 2

For spectral risk measures ρ and $R_N \to R_0$ weakly, $\Gamma^{\rho}(X; R_N) \to \Gamma^{\rho}(X; R)$, if $\theta \mapsto \mathbb{E}_{\theta}[X]$ is continuous and bounded.

- \bullet convergence on $\mathcal{C}^b(\Theta)$ in practice not very restrictive
- risk measure version of Portmanteau theorem as a corollary
- some risk-capturing functionals do not fulfill (CP): essential supremum
- large sample approximations via delta method
- meanwhile, more general results employing stronger topologies are provided by Krätschmer et al. (2012)

ПΠ

Case study: Asian option bid-ask spreads

17

ПΠ

Case study: barrier option option bid-ask spreads

18

Case study: lookback option bid-ask spreads

Choice of risk measure

Which risk-capturing functional Γ , resp. convex risk measure ρ , to choose?

- bid-ask spreads of exotics should match to bid-ask spreads of vanillas
- calibration to vanilla bid-ask prices \Rightarrow market-implied risk measure?

Challenges

- class of all law-invariant convex risk measures may be too big
- description of law-invariant convex risk measures is cumbersome
- flexible and tractable subclass?

Distorted probabilities and the Choquet integral

Definition 3 (Distortion function)

A function $\gamma : [0, 1] \rightarrow [0, 1]$ is called distortion function, if γ is monotone, $\gamma(0) = 0$, and $\gamma(1) = 1$.

Natural construction of risk measures employing distortion functions:

Proposition 4 (e.g. Denneberg (1994))

 γ concave distortion function \Rightarrow the Choquet integral

$$\begin{split} \Gamma(X) &:= \int X \, \mathrm{d}(\gamma \circ P) \\ &:= \int_{-\infty}^0 \gamma(P(X > x)) - 1 \, \mathrm{d}x + \int_0^\infty \gamma(P(X > x)) \, \mathrm{d}x \end{split}$$

is a coherent risk measure, the distortion risk measure with distortion γ .

Why distortion risk measures?

- convenient construction principle for coherent risk measures
- \bullet fully characterizable by concave distortion function γ
 - \Rightarrow tractable translation of risk measures into functions
- distortion risk measures are the "center of attraction" of coherent risk measures in CLT sense (cf. Belomestny and Krätschmer (2012))
- calculation of Choquet integrals is convenient
- distorted probabilities are widely understood in insurance and finance

Examples for distortion functions

Example 5 (AVaR-family of concave distortions)

 $(AVaR_{\alpha})_{\alpha \in (0,1]}$ is parametric class of distortion risk measures w.r.t. the distortion function

$$\gamma_{\alpha}(y) := \begin{cases} \frac{y}{\alpha}, & y \in [0, \alpha] \\ 1, & \text{otherwise} \end{cases}$$

Example 6 (minmaxvar-family of concave distortions) $\psi_x(y): [0,1] \to [0,1], x \in \mathbb{R}_{\geq 0}$ with

$$\psi_x(y) := 1 - \left(1 - y^{\frac{1}{x+1}}\right)^{x+1}$$

defines the minmaxvar-family of concave distortions (cf. Cherny and Madan (2010))

Bid-ask calibration problem

- Cherny and Madan (2010): Calibration of bid-ask prices to parametric families of distortion risk measures
- parametric approach feasible?
- \bullet little empirical evidence about specific shape of distortion functions \Rightarrow non-parametric approach

Problem 7 (Bid-ask calibration problem)

- C_1, \ldots, C_M contingent claims with bid-ask quotes $(\bar{C}_1^{\text{bid}}, \bar{C}_1^{\text{ask}}), \ldots, (\bar{C}_M^{\text{bid}}, \bar{C}_M^{\text{ask}})$
- $\eta : \mathbb{R}^{2M}_{\geq 0} \to \mathbb{R}_{\geq 0}$ error function

Convex risk measure $\tilde{\Gamma}$ solves (symmetric) bid-ask calibration problem on \mathcal{G} , if $\tilde{\Gamma}$ minimizes the function

$$\Gamma \mapsto \eta \left(|-\Gamma(-C_1) - \bar{C}_1^{\text{bid}}|, \dots, |-\Gamma(-C_M) - \bar{C}_M^{\text{bid}}|, |\Gamma(C_1) - \bar{C}_1^{\text{ask}}|, \dots, |\Gamma(C_M) - \bar{C}_M^{\text{ask}}| \right)$$

over \mathcal{G}

Bid-ask calibration problem

Theorem 8 (Existence of a solution to the bid-ask calibration problem) $K > 0, \eta$ continuous error function, $f(X) := \mathbb{E}.[X]$ *R-a.s. bounded and* $G_K := \{\gamma : [0,1] \rightarrow [0,1] : \gamma$ Lipschitz, concave distortion function with Lipschitz constant $K\}$. Then the bid-ask calibration problem has a solution in G_K . **Proof**

- use Arzelà-Ascoli theorem to show $\|\cdot\|_{\infty}$ -compactness of G_K
- \bullet show that the Choquet integral is $\|\cdot\|_\infty\text{-continuous}$ in γ

Bid-ask calibration problem Comments

Class G_K is very wide, since

- \bullet every concave distortion function is Lipschitz on $[\varepsilon,1]$ for every $\varepsilon>0$
- \bullet bid-ask calibration problem can be solved in $\|\cdot\|_\infty\text{-closed}$ subclasses of distortion functions
- Theorem 10 can be extended to discontinuous distortion functions

Consequences

- bid-ask calibration problem solvable in more general, not-so-easy-to-parameterize classes
- finding a tractable, more flexible class than one-parametric families may yield more flexibility

Non-parametric calibration ansatz

Lemma 9

Every concave distortion function can be $\|\cdot\|_{\infty}$ -approximated by concave piecewise linear distortion functions.

- concave piecewise linear functions are a flexible class
- Choquet integral w.r.t. a concave piecewise linear distorted probability can be easily calculated

\Rightarrow

Constrained optimization problem, finding a vector $\Delta \gamma \in \mathbb{R}^N$ minimizing the error function η subject to the constraints

$$\sum_{n=1}^{N} \Delta \gamma_n = 1, \ \Delta \gamma \ge 0,$$
$$\left(\frac{\Delta \gamma_2}{y_2 - y_1} - \frac{\Delta \gamma_1}{y_1 - y_0}, \dots, \frac{\Delta \gamma_N}{y_N - y_{N-1}} - \frac{\Delta \gamma_{N-1}}{y_{N-1} - y_{N-2}}\right) =: D(\Delta \gamma) \le 0$$

Non-parametric calibration ansatz

Goal function for optimization:

$$\min_{\Delta\gamma\in\mathbb{R}_{\geq 0}^{N}} \eta \left(\left| \sum_{n=1}^{N} \Delta\gamma_{n}\mathbb{E}[f(C_{1})|f(C_{1}) \in [q_{y_{n-1}}, q_{y_{n}}]] - \bar{C}_{1}^{\text{bid}} \right|, \dots, \\ \left| \sum_{n=1}^{N} \Delta\gamma_{n}\mathbb{E}[f(C_{M})|f(C_{M}) \in [q_{y_{n-1}}, q_{y_{n}}]] - \bar{C}_{M}^{\text{bid}} \right|, \\ \left| \sum_{n=1}^{N} \Delta\gamma_{n}\mathbb{E}[f(C_{1})|f(C_{1}) \in [\text{VaR}_{y_{n-1}}, \text{VaR}_{y_{n}}]] - \bar{C}_{1}^{\text{ask}} \right|, \dots, \\ \left| \sum_{n=1}^{N} \Delta\gamma_{n}\mathbb{E}[f(C_{M})|f(C_{M}) \in [\text{VaR}_{y_{n-1}}, \text{VaR}_{y_{n}}]] - \bar{C}_{M}^{\text{ask}} \right| \right)$$

- \bullet Data: 501 bid-ask prices of DAX pv calls/puts
- \bullet Calibration to mid prices with a BNS model
- Distribution on parameter space as above
- \bullet Calibration to bid-ask prices with piecewise linear, AVaR-, minmaxvar-distortions

Distortion type	RMSE/mean to bid-ask prices	CPU time
piecewise linear 1000 nodes	1.64%	$301.11 \sec$
piecewise linear 100 nodes	1.64%	$4.26 \sec$
minmaxvar-family	1.65%	$3.17 \mathrm{sec}$
AVaR-family	1.64%	$3.73 \mathrm{sec}$

Empirical result

- results are pretty similar in calibration performance
- piecewise linear distortion has characteristic shape
- yields new parametric family allowing for fast and efficient calibration

$$\gamma_{\lambda}(u) := \begin{cases} 0, & u = 0\\ \lambda + (1 - \lambda)u, & u \in (0, 1] \end{cases}$$

is called the ess sup-expectation convex combination risk measure with weight $\lambda \in [0, 1]$

Distortion framework	RMSE/mean to bid-ask prices	CPU time
piecewise linear 100 nodes	1.64%	$4.26 \sec$
minmaxvar -family	1.65%	$3.17 \mathrm{sec}$
AVaR-family	1.64%	3.73 sec
$\mathrm{esssup} extsf{-exp-family}$	1.64%	$0.21 \sec$

Conclusion

- (1) new methodology for non-linear derivatives pricing
- (2) incorporating parameter risk employing convex risk measures
- (3) bid-ask spreads of exotic options can be set according to parameter risk
- (4) parameter risk of different models can be compared
- (5) non-parametric ansatz for the bid-ask calibration problem
- (6) empirical results about distortion shape

Literature

- (1) K.F. Bannör, M. Scherer, Capturing parameter uncertainty by convex risk measures (2013), to appear in European Actuarial Journal
- (2) K.F. Bannör, M. Scherer, On the calibration of distortion risk measures to bid-ask prices (2012), *submitted to Quantitative Finance*
- (3) J. Bion-Nadal, Bid-ask dynamic pricing in financial markets with transaction costs and liquidity risk, *Journal of Mathematical Economics* **45:11** (2009) pp. 738-750
- (4) P. Carr, H. Geman, D. Madan, Pricing and hedging in incomplete markets, *Journal of Financial Economics* **62** (2001), pp. 131–167
- (5) A. Cherny, D. Madan, Markets as a counterparty: An introduction to conic finance, *International Journal of Theoretical and Applied Finance* **13:8** (2010) pp. 1149-1177
- (6) R. Cont, Model uncertainty and its impact on the pricing of derivative instruments, *Wiley: Mathematical Finance* **16:3** (2006) pp. 519–547
- (7) F. Knight, Risk, uncertainty, and profit. Hart, Schaffner & Marx (1921).
- (8) E. Lindström, Implication of parameter uncertainty on option prices, *Advances in Decision Sciences* **2010** (2010) Article ID 598103
- (9) M. Xu, Risk measure pricing and hedging in incomplete markets, Annals of Finance, 2 (2006) pp. 51-71

Case study: Heston model (barrier option)

36

